STEP MATHEMATICS 1
 2018
 Mark Scheme

$a^{2} x=x(b-x)^{2}$
$\Rightarrow a=b-x$ or $-a=b-x$
$x=b-a$ or $b+a$
$P=\left(b-a, a^{2}(b-a)\right), Q=\left(b+a, a^{2}(b+a)\right)$

M1 equating the two equations (with/without the factor of x)
M1 for solving method, this way or via a quadratic equation \ldots which should be $x^{2}-\left(b^{2}-a^{2}\right)$
A1 both
A1 both \boldsymbol{y}-coordinates

B1 for a fully correct graph; N.B. $(b, 0)$ need not be noted
[There is no need for candidates to justify that this is the correct arrangement: a second, more interesting, sketch arises when $0<b<a$ but the question does not require it.]
$y=x^{3}-2 b x^{2}+b^{2} x \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 x^{2}-4 b x+b^{2}$
or $\frac{\mathrm{d} y}{\mathrm{~d} x}=(b-x)^{2}-2 x(b-x)$

$$
\begin{aligned}
& =3\left(b^{2}-2 a b+a^{2}\right)-4 b(b-a)+b^{2} \\
& =3 a^{2}-2 a b \text { or } a(3 a-2 b) \text { at } P
\end{aligned}
$$

Eqn. of tgt. at P is

$$
\begin{aligned}
& y-a^{2}(b-a)=a(3 a-2 b)(x-[b-a]) \\
y= & a(3 a-2 b) x+a^{2}(b-a)-\left(3 a^{2}-2 a b\right)(b-a) \\
y= & a(3 a-2 b) x-(b-a)\left[4 a^{2}-2 a b\right] \\
y= & a(3 a-2 b) x+2 a(b-a)^{2}
\end{aligned}
$$

M1 for differentiating a cubic
using the Product Rule of differentiation on $y=x(b-x)^{2}$
M1 for substituting $x=b-a$
A1 (AG) for correct gradient in any form
M1 method for tgt. eqn. via $y-y_{c}=m\left(x-x_{c}\right)$ or $y=m x+c$ with P 's coords. substd.

A1 (AG) legitimately obtained \& written in this form

$$
\begin{aligned}
S= & \int_{0}^{b-a}\left(x^{3}-2 b x^{2}+b^{2} x\right) \mathrm{d} x-\frac{1}{2} a^{2}(b-a)^{2} \\
= & {\left[\frac{1}{4} x^{4}-\frac{2}{3} b x^{3}+\frac{1}{2} b^{2} x^{2}\right]_{0}^{b-a}-\frac{1}{2} a^{2}(b-a)^{2} } \\
= & \frac{1}{4}(b-a)^{4}-\frac{2}{3} b(b-a)^{3}+\frac{1}{2} b^{2}(b-a)^{2} \\
& \quad-\frac{1}{2} a^{2}(b-a)^{2} \\
= & \frac{1}{12}(b-a)^{2}\left\{3(b-a)^{2}-8 b(b-a)+6\left(b^{2}-a^{2}\right)\right\} \\
= & \frac{1}{12}(b-a)^{3}(3 b-3 a-8 b+6 b+6 a) \\
= & \frac{1}{12}(b-a)^{3}(b+3 a)
\end{aligned}
$$

M1 method for finding area by $\int \mathrm{n} .-\Delta$ area

B1 for correct \int n. of a 3 (or 4) term cubic (even if Δ omitted)

$$
=\frac{1}{4}(b-a)^{4}-\frac{2}{3} b(b-a)^{3}+\frac{1}{2} b^{2}(b-a)^{2} \quad \text { M1 for substn. of correct limits in any integrated terms }
$$

M1 for correctly factoring out at least two linear terms (must have a difference of two areas or equivalent)

A1 (AG) legitimately obtained

M1 correct method for required area

A1 correct, factorised form for \boldsymbol{T} seen at some stage
$\frac{S}{T}=\frac{1}{12} \cdot \frac{b+3 a}{a}$ or $S-\frac{1}{3} T=\ldots$ or $3 S-T=\ldots$
M1 for genuine attempt to consider any of these algebraically
A1 (AG) correct result legitimately obtained
E1 for proper justification of result
(E0 for unexplained 'backwards' logic)
(i) $\log _{10} \pi^{2}<1$

$$
\frac{1}{\log _{2} \pi}+\frac{1}{\log _{5} \pi}=\frac{\log _{10} 2}{\log _{10} \pi}+\frac{\log _{10} 5}{\log _{10} \pi}
$$

$$
=\frac{1}{\log _{10} \pi}
$$

M1 A1 Simplifying to an expression involving only one log
Linking to given inequality to complete the proof that LHS >2 AG E1 Penalise answers which assume the result here
(ii) $\ln \pi>1+\frac{1}{5} \ln 2$
$\ln 2>\frac{2}{3}$
Combining both facts to get $\ln \pi>\frac{17}{15}$ AG
M1 Taking logs to base 10 of given inequality RHS might still be in terms of a log
A1 Simplifying to an expression involving only one log (might be awarded later)

M1 Writing both denominators in the same base (might not be base 10)

M1 Using the change-of-base-formula to turn into "In"
A1 Producing a correctly simplified version (may be given implicitly later)

M1 A1 Taking natural logs of given inequality
E1 Penalise answers which assume the result here

6
(iii) $\ln \pi<1+\frac{1}{2} \ln 10$

$$
=\frac{\log _{10} 10}{2 \log _{10} \mathrm{e}}
$$

$\log _{10} \mathrm{e}>\frac{1}{3} \log _{10} 20$

$$
=\frac{1}{3}\left(1+\log _{10} 2\right)
$$

$$
>\frac{13}{30}
$$

Putting it all together to get $\ln \pi<\frac{15}{13}$ AG

M1 Taking a \log of given inequality
M1 Converting to base 10 using the change-of-base-formula
M1 Taking log to base $\mathbf{1 0}$ of given inequality
M1 Linking to $\log _{10} 2$
A1 Correct use of given result
E2 Penalise if inequality directions misused

Q3 (i) $\tan \alpha=\frac{y}{x+a}$ and $\tan \beta=\frac{y}{2 a-x}$.

B1 B1

If $\beta=2 \alpha$ then
$\tan 2 \alpha=\frac{2 \tan \alpha}{\begin{array}{c}1-\tan ^{2} \alpha \\ 2 y\end{array}}$
M1 for using formula

$$
=\frac{\frac{2 y}{x+a}}{1-\frac{y^{2}}{(x+a)^{2}}}
$$

A1 correct unsimplified

$=\frac{y}{2 a-x}$
i.e. $\frac{y}{2 a-x}=\frac{2 y(x+a)}{(x+a)^{2}-y^{2}}$

M1 equating with $\tan \beta$
A1 simplified equation
$y\left((x+a)^{2}-y^{2}\right)=2 y(x+a)(2 a-x)$
M1 for getting rid of fractions
$(x+a)^{2}-y^{2}=2(x+a)(2 a-x)$ since $y>0$
$x^{2}+a^{2}+2 a x-y^{2}=4 a^{2}-2 x^{2}+2 a x$ so
$3 x^{2}-3 a^{2}=y^{2}$
E1 for justifying this step (this could happen earlier)
A1 (AG)
Alt.1:
$y=\mathrm{PR} \sin \alpha=\mathrm{PS} \sin 2 \alpha$ so $\mathrm{PR}=2 \mathrm{PS} \cos \alpha$
$x+a=P R \cos \alpha=2 P S \cos ^{2} \alpha$
$2 a-x=\mathrm{PS} \cos 2 \alpha=2 \mathrm{PS} \cos ^{2} \alpha-\mathrm{PS}$
so $3 x-3 a=2 \mathrm{PS}\left(1-\cos ^{2} \alpha\right)=2 \mathrm{PS} \sin ^{2} \alpha$
so $3\left(x^{2}-a^{2}\right)=4 \mathrm{PS}^{2} \sin ^{2} \alpha \cos ^{2} \alpha=y^{2}$.
M1 M1 for useful expression for $\cos \alpha$

M1 A1 A1 for expressing x^{2} and y^{2} in terms of a and a length
M1 A1 for expression for $3\left(x^{2}-a^{2}\right)$
M1 A1 (AG) for checking equality
Alt.2:
Let angle bisector of S meet PR at T.
PST and PRS are similar
B1
so $\mathrm{PT} / \mathrm{PS}=\mathrm{PS} / \mathrm{PR}$
M1 A1
$P T=P R \frac{x-a / 2}{x+a}$, and so
M1 A1
$P R^{2}\left(x-\frac{a}{2}\right)=P S^{2}(x+a)$
M1
Pythagoras gives
M1 A1 unsimplified cubic
$\left((x-2 a)^{2}+y^{2}\right)(x+a)=\left((x+a)^{2}+y^{2}\right)\left(x-\frac{a}{2}\right)$
Simplifying: $\frac{3 a}{2} y^{2}=\frac{9 a}{2}\left(x^{2}-a^{2}\right)$
A1 (AG)
For methods (not involving similar triangles) which reach a higher-order polynomial in a, x and y, give M1 M1 A1. As progress towards this, give M1 M1 for Sine Rule + Pythagoras.
Alt.3:
$y=\tan \alpha \cdot(x+a)$ and $y=\tan \beta \cdot(2 a-x) \quad$ B1 B1
$\tan \alpha \cdot(x+a)=\frac{2 \tan \alpha}{1-\tan ^{2} \alpha}(2 a-x)$
$\tan \alpha \neq 0$ so $x+a=\frac{2 a-x}{1-\tan ^{2} \alpha}$
M1 for double tangent A1
giving $x=\frac{3+\tan ^{2} \alpha}{3-\tan ^{2} \alpha} a$
E1
and $y=\cdots$
M1 A1 writing x in terms of a and $\tan \alpha$
M1 A1 for expression for y and checking $y^{2}=3\left(x^{2}-a^{2}\right)$
(ii) If $3\left(x^{2}-a^{2}\right)=y^{2}$ then

$$
(x+a)^{2}-y^{2}=2(x+a)(2 a-x) \quad \text { M1 rearranging into something useful }
$$

$x \neq 2 a,-a$ (the latter because $y>0$)
meaning both sides non-zero so

$$
\begin{gathered}
\frac{y}{2 a-x}=\frac{2 y(x+a)}{(x+a)^{2}-y^{2}} \\
=\frac{\frac{2 y}{x+a}}{1-\frac{y^{2}}{(x+a)^{2}}}
\end{gathered}
$$

E1 justifying this

M1 dividing through

M1 A1 for something in terms of $\tan \alpha$
So $\tan \beta=\tan 2 \alpha$

A1

Some candidates might just say "everything in (i) is reversible", without checking. I suggest such a claim would get the three M marks above but not the A or E marks. Iffor some reason a candidate does this part but not (i), they should also get the two B1 marks and the first M1 from part (i) for using these facts here.
Other methods exist which give instead $\cos 2 \alpha= \pm \cos \beta$.

Alt.:

$$
\begin{array}{rlrl}
\tan (\beta-\alpha) & =\frac{\frac{y}{2 a-x}-\frac{y}{x+a}}{1+\frac{y^{2}}{(x+a)(2 a-x)}} & & \text { M1 } \\
& =\frac{y(2 x-a)}{(x+a)(2 a-x)+y^{2}} & & \text { M1 for single fraction } \\
& =\frac{y(2 x-a)}{(x+a)(2 a-x)+3 x^{2}-3 a^{2}} & & \text { M1 substituting } \boldsymbol{y} \\
& =\frac{y(2 x-a)}{(x+a)(2 x-a)} & \text { A1 }
\end{array}
$$

Since $x \neq a / 2\left(\right.$ as otherwise $\left.y^{2}<0\right)$
we get $\tan (\beta-\alpha)=\tan \alpha$

M1 for single fraction

M1 for single fraction

A1

A1

E1 (be generous if there is an attempt to justify)
A1

This means $\beta=2 \alpha+k \pi$ for some integer k.
$0<\alpha<\pi$ so $y>0$ and $0<\beta<\pi$
OR $y>0$ and $x<2 a$ so $0<\beta<\pi / 2$
so $-\pi<2 \alpha-\beta<2 \pi$
so $k=0,-1$
giving $\beta=2 \alpha$ or $\beta=2 \alpha-\pi$.

B1
B1 for bounding $\boldsymbol{\beta}$ (the bound you get depends on whether you use the information given in this part or given earlier) M1 for using this to bound k
A1 only two values of \boldsymbol{k} - don't worry about a sign error A1 cao (don't need to check both are possible)

Alt. part (ii) (all 11 marks):
Construct the point $S^{\prime}=(2 x-2 a, 0)$,
making PSS' isosceles.
M2*
Now $\mathrm{PS}^{2}=y^{2}+(2 a-x)^{2}$

$$
\begin{aligned}
& =3\left(x^{2}-a^{2}\right)+(2 a-x)^{2} \\
& =(2 x-a)^{2}=\mathrm{RS}^{\prime 2}
\end{aligned}
$$

M2* A2*
Thus we have $\mathrm{PS}=\mathrm{PS}^{\prime}=\mathrm{RS}^{\prime}$
If S^{\prime} lies between R and S , this gives $\mathrm{RPS}^{\prime}=\alpha$
and $\mathrm{PS}^{\prime} \mathrm{R}=\pi-2 \alpha$ so $\beta=2 \alpha$.
If R lies between S^{\prime} and S , this gives
M1 A1

PRS $^{\prime}=(\pi-\beta) / 2$ so $\beta=2 \alpha-\pi$.
B1 for considering both cases

Candidates who attempt this are likely to do all the calculations separately for the two cases. If so, give 1 mark out of each 2* above for each part where the corresponding working appears.
$\mathrm{f}^{\prime}(x)=\frac{x \ln x \cdot 2\left(1-(\ln x)^{2}\right) \cdot-2 \ln x \cdot \frac{1}{x}-\left(1-(\ln x)^{2}\right)^{2} \cdot\left(x \cdot \frac{1}{x}+\ln x\right)}{(x \ln x)^{2}}$

M1 Use of product or quotient rule (or alt. substn.)
A11 $1^{\text {st }}$ term (numerator) correct
A1 $2^{\text {nd }}$ term (numerator) \& denominator correct
Showing both $\mathrm{f}(x)$ and $\mathrm{f}^{\prime}(x)=0$ when $(\ln x)^{2}=1$
E1
(i) $u=\ln t$

$$
\begin{aligned}
I & =\int \frac{\left(1-u^{2}\right)^{2}}{u} \mathrm{~d} u \\
& =\ln |u|-u^{2}+\frac{1}{4} u^{4} \quad(+c)
\end{aligned}
$$

M1 Any sensible substitution
M1 A1 Full substitution used; correct $=\int\left(\frac{1}{u}-2 u+u^{3}\right) \mathrm{d} u$
A1 Penalise absence of modulus signs here
(but allow for next 2 marks)

$$
\begin{array}{ll}
=\ln |\ln x|-(\ln x)^{2}+\frac{1}{4}(\ln x)^{4}+\frac{3}{4} & \text { for } 0<x<1 \\
=\ln |\ln x|-(\ln x)^{2}+\frac{1}{4}(\ln x)^{4}+\frac{3}{4} & \text { for } x>1
\end{array}
$$

A1
A1

$$
\begin{aligned}
\mathrm{F}\left(x^{-1}\right) & =\ln |-\ln x|-(-\ln x)^{2}+\frac{1}{4}(-\ln x)^{4}+\frac{3}{4} \\
& =\mathrm{F}(x)
\end{aligned}
$$

M1 For using $\ln \left(x^{-1}\right)=-\ln x$
E1 For candidates who notice that $F(x)$ takes the same functional form, this will be quite easy. Otherwise, two cases are required.

G1 Asymptote $\boldsymbol{x}=0$
G1 Asymptote $\boldsymbol{x}=1$
G1 Negative gradient for $0<x<1$
G1 Positive gradient for $x>1$
G1 Stationary points at $x=\mathrm{e}^{-1}$ and $x=\mathrm{e}$
G1 Points of inflexion at $x=\mathrm{e}^{-1}$ and $x=\mathrm{e}$
G1 Zeroes at $x=\mathrm{e}^{-1}$ and $x=\mathrm{e}$
G1 Generally correct shape
(ii)

$$
\begin{aligned}
& \mathrm{P}(x)=k(x-1)(x-2)(x-3) \ldots(x-N)+1 \\
& \mathrm{P}(N+1)=k(N)(N-1)(N-2) \ldots(1)+1 \\
& =
\end{aligned}
$$

B1
M1 P($N+1$) for an $N^{\text {th }}$-degree polynomial

A1
A1 (no k, no mark)

B1 any form
Let $m=N+r$ (so that $m>N$)
Require $\mathrm{P}(m)=\binom{m-1}{N}+1=m$ or $\binom{m-1}{N}=m-1 \quad$ M1 or equivalent statement

$$
\begin{array}{r}
\binom{m-1}{N}=\frac{(m-1)(m-2)(m-3) \ldots(m-N)}{N(N-1) \ldots \times 2}=m-1 \\
\Rightarrow m=N+2 \quad \text { i.e. } r=2
\end{array}
$$

M1 for general approach

A1
Notes: Question only requires candidates to find a suitable r so noting $r=2$ (M1) and checking that it works (M1 A1) can score all of these final 3 marks
(iii) $\mathrm{S}(x)=(x-a)(x-b)(x-c)(x-d)+2001$

B1 stated (a, b, c, d distinct integers)
(a)
$\mathrm{S}(e)=(e-a)(e-b)(e-c)(e-d)+2001=2018$
$\Rightarrow(e-a)(e-b)(e-c)(e-d)=17$

M1 looking at factorisations of 17

A1 must be fully explained
(b) $\mathrm{S}(x)=(x-a)(x-b)(x-c)(x-d)+2001$ (integers $a<b<c<d)$
$\mathrm{S}(0)=a b c d+2001=2017 \Rightarrow a b c d=16$
B1
and we require 16 to be written as the product of four distinct integers a, b, c, d with $a<b<c<d$
Thus $a, b, c, d \in\{ \pm 1, \pm 2, \pm 4, \pm 8, \pm 16\}$; allow $\{ \pm 1, \pm 2, \pm 4, \pm 8\}$ M1
I If $a=-16$, then $b, c, d \in\{ \pm 1\}$ and this cannot be done distinctly
II If $a=-8$, then $b, c, d \in\{ \pm 1, \pm 2\}$ with exactly one of them $-_{\text {ve }}$ $\Rightarrow(a, b, c, d)=(-\mathbf{8}, \mathbf{- 1}, \mathbf{1}, \mathbf{2})$
III If $a=-4$, then $b, c, d \in\{ \pm 1, \pm 2, \pm 4\}$ with exactly one of them $-_{\text {ve }}$
$\Rightarrow(a, b, c, d)=(-\mathbf{4}, \mathbf{- 2}, \mathbf{1}, \mathbf{2})$ or $(-\mathbf{4}, \mathbf{- 1}, \mathbf{1}, 4)$
IV If $a=-2$, then $b, c, d \in\{ \pm 1, \pm 2, \pm 4, \pm 8\}$ with exactly one of them $-_{\text {ve }}$ $\Rightarrow(a, b, c, d)=\mathbf{(- 2 , - 1 , 2 , 4)}$ or $(-\mathbf{2}, \mathbf{- 1}, \mathbf{1}, \mathbf{8})$
V $\quad a \neq-1$ since then $a b c d<0$ and if $a>0$ then $a b c d \geq 64$
There are thus 5 ways in which a, b, c, d can be chosen s.t. $\mathrm{S}(0)=2017$
M1 for a (partially) systematic case analysis
A1 for any three correct solutions
A1 for all five and no extras
E1 for correct justification no solutions in cases I, V
Important note: Candidates need to identify clearly the number of cases (so the actual solutions are not required) and may still gain the marks despite numerical errors if the method for finding them is clearly explained. However, I very much doubt this will happen.

Alt. 1 The cases could be argued by sign first and then value, as follows.
a, b, c, d cannot be all $+_{\text {ve }}$ or all $-_{\text {ve }}$ since then $a b c d \geq 64$
so we must have two $+_{\text {ve }}$ and two $-_{\text {ve }}$.
Note that $|a| \neq 16$ since all three others must then have $|.|=$.1 .
So the options are:
I $(a, b)=(-8,-4)$ impossible since $a b c d$ already too big
II $\quad(a, b)=(-8,-2)$ impossible since then both c, d must equal 1
III $\quad(a, b)=(-8,-1) \Rightarrow(c, d)=(1,2)$
IV $\quad(a, b)=(-4,-2) \Rightarrow(c, d)=(1,2)$
$\mathbf{V} \quad(a, b)=(-4,-1) \Rightarrow(c, d)=(1,4)$
VI $\quad(a, b)=(-2,-1) \Rightarrow(c, d)=(1,8)$ or $(2,4)$
and there are thus 5 ways in which a, b, c, d can be chosen s.t. $\mathrm{S}(0)=2017$
M1 for a (partially) systematic case analysis
A1 for any three correct solutions
A1 for all five and no extras
E1 for correct justification no solutions in cases I, II
Alt. 2 Instead, one might reason thus:
As a product of four factors, in magnitude order,
$16=1.1 .1 .16$ or 1.1.2.8 or 1.1.4.4 or 1.2.2.4 or 2.2.2.2
We reject the first and last of these since we can have at most two of equal magnitude (two ${ }_{\text {ve }}$ and two $-{ }_{-v e}$). This leaves us with
I 1.1.2.8 gives $(a, b, c, d)=\{-1,1,-2,8\}$ or $\{-1,1,2,-8\}$ i.e. $(a, b, c, d)=(-2,-1,1,8)$ or $(-8,-1,1,2)$

II 1.1.4.4 gives $(a, b, c, d)=\{-1,1,-4,4\}$
i.e. $(a, b, c, d)=(-4,-1,1,4)$

III 1.2.2.4 gives $(a, b, c, d)=\{-2,2,1,-4\}$ or $\{-2,2,-1,4\}$
i.e. $(a, b, c, d)=(-4,-2,1,2)$ or $(-2,-1,2,4)$

M1 for a (partially) systematic case analysis
A1 for any three correct solutions
A1 for all five and no extras
E1 for initial justification which 4-term factorisations of 16 work

Q6

$$
\begin{aligned}
& 2 \sin \theta(\sin \theta+\sin 3 \theta+\sin 5 \theta+\ldots+\sin (2 n-1) \theta) \\
& \equiv 2 \sin \theta \sin \theta+2 \sin \theta \sin 3 \theta+2 \sin \theta \sin 5 \theta+\ldots+2 \sin \theta \sin (2 n-1) \theta
\end{aligned}
$$

$$
\equiv(\cos 0-\cos 2 \theta)+(\cos 2 \theta-\cos 4 \theta)+(\cos 4 \theta-\cos 6 \theta)+\ldots \quad \text { M1 complete method using given identity }
$$

$$
\ldots+(\cos (2 n-2) \theta-\cos 2 n \theta)
$$

$\equiv 1-\cos 2 n \theta$ since all intermediate terms cancel

A1 (AG) legitimately obtained

(i) The midpoint of the $k^{\text {th }}$ strip is at $x=\frac{\left(k-\frac{1}{2}\right) \pi}{n}$ or $\frac{(2 k-1) \pi}{2 n}$ B Ht. of strip is $\sin \frac{(2 k-1) \pi}{2 n}$ and its area is $\frac{\pi}{n} \sin \frac{(2 k-1) \pi}{2 n}$ B1

$$
A_{n}=\text { sum of all strips }
$$

$$
=\frac{\pi}{n}(\sin \theta+\sin 3 \theta+\sin 5 \theta+\ldots+\sin (2 n-1) \theta), \quad \theta=\frac{\pi}{2 n}
$$

$$
=\frac{\pi}{n}\left(\frac{1-\cos 2 n \theta}{2 \sin \theta}\right)
$$

$$
=\frac{\pi}{n}\left(\frac{1-\cos \pi}{2 \sin \theta}\right)=\frac{\pi}{n}\left(\frac{2}{2 \sin \left(\frac{\pi}{2 n}\right)}\right)
$$

$$
\Rightarrow A_{n} \sin \frac{\pi}{2 n}=\frac{\pi}{n}
$$

A1 (AG) fully established
(ii) $\quad B_{n}=\frac{1}{2}\left(\frac{\pi}{n}\right)\left\{\sin 0+2\left(\sin \left(\frac{\pi}{n}\right)+\sin \left(\frac{2 \pi}{n}\right)+\sin \left(\frac{3 \pi}{n}\right)+\ldots+\sin \left(\frac{(n-1) \pi}{n}\right)\right)+\sin \pi\right\}$

M1 use of Trapezium Rule formula in context

$$
=\left(\frac{\pi}{n}\right)(\sin \theta+\sin 2 \theta+\sin 3 \theta+\ldots+\sin (n-1) \theta), \quad \theta=\frac{\pi}{n}
$$

$$
B_{n} \sin \frac{\pi}{2 n}=\left(\frac{\pi}{n}\right) \sin \frac{1}{2} \theta(\sin \theta+\sin 2 \theta+\sin 3 \theta+\ldots+\sin (n-1) \theta)
$$

$$
=\left(\frac{\pi}{2 n}\right)\left(2 \sin \frac{1}{2} \theta \sin \theta+2 \sin \frac{1}{2} \theta \sin 2 \theta+2 \sin \frac{1}{2} \theta \sin 3 \theta+\ldots+2 \sin \frac{1}{2} \theta \sin (n-1) \theta\right)
$$

M1 use of initial result
$=\left(\frac{\pi}{2 n}\right)\left\{\left(\cos \frac{1}{2} \theta-\cos \frac{3}{2} \theta\right)+\left(\cos \frac{3}{2} \theta-\cos \frac{5}{2} \theta\right)+\ldots+\left(\cos \left(n-\frac{3}{2}\right) \theta-\cos \left(n-\frac{1}{2}\right) \theta\right)\right\}$ $=\left(\frac{\pi}{2 n}\right)\left\{\cos \left(\frac{\pi}{2 n}\right)-\cos \left(n-\frac{1}{2}\right)\left(\frac{\pi}{n}\right)\right\} \quad$ A1 all intermediate terms cancelled
Now, $\cos \left(n-\frac{1}{2}\right)\left(\frac{\pi}{n}\right)=\cos \left(\pi-\frac{\pi}{2 n}\right)=-\cos \left(\frac{\pi}{2 n}\right) \quad$ M1 dealing with the final term in $\}$
so $B_{n} \sin \frac{\pi}{2 n}=\left(\frac{\pi}{2 n}\right)\left\{2 \cos \left(\frac{\pi}{2 n}\right)\right\}=\frac{\pi}{n} \cos \left(\frac{\pi}{2 n}\right)$
A1
5
(iii) $A_{n}+B_{n}$

$$
\begin{aligned}
& \begin{array}{c}
=\frac{\pi}{n \sin \left(\frac{\pi}{2 n}\right)}+\frac{\pi \cos \left(\frac{\pi}{2 n}\right)}{n \sin \left(\frac{\pi}{2 n}\right)}=\frac{\pi}{n \sin \left(\frac{\pi}{2 n}\right)}\left(1+\cos \left(\frac{\pi}{2 n}\right)\right) \quad \text { M1 } \\
=\frac{\pi}{n \sin \left(\frac{\pi}{2 n}\right)}\left(1+2 \cos ^{2}\left(\frac{\pi}{4 n}\right)-1\right) \\
=\frac{2 \pi \cos ^{2}\left(\frac{\pi}{4 n}\right)}{n \sin \left(\frac{\pi}{2 n}\right)} \quad \text { M1 use of double-angle formula } \\
B_{2 n}=\frac{\pi \cos \left(\frac{\pi}{4 n}\right)}{2 n \sin \left(\frac{\pi}{4 n}\right)}=\frac{\pi \cos \left(\frac{\pi}{4 n}\right) \cos \left(\frac{\pi}{4 n}\right)}{n \cdot 2 \sin \left(\frac{\pi}{4 n}\right) \cos \left(\frac{\pi}{4 n}\right)}=\frac{\pi \cos ^{2}\left(\frac{\pi}{4 n}\right)}{n \sin ^{2}\left(\frac{\pi}{2 n}\right)} \text { M1 B1 or equivalent later tidying up } \\
=\frac{1}{2}\left(A_{n}+B_{n}\right) \text { as requilt with } n \rightarrow 2 n
\end{array} \quad \text { A1 (AG) fully established }
\end{aligned}
$$

Alt. $A_{n}=\frac{\pi}{n} \operatorname{cosec} \frac{\pi}{2 n}$ and $B_{n}=\frac{\pi}{n} \cot \frac{\pi}{2 n}$, so the result now boils down to trig. identity work:

$$
A_{n}+B_{n}=\frac{\pi}{n}\left(\frac{1+\cos \theta}{\sin \theta}\right), \theta=\frac{\pi}{2 n} \mathbf{M} 1
$$

$$
=\frac{1+2 c^{2}-1}{2 s c}=\frac{c}{s} \text { where } c=\cos \frac{1}{2} \theta \text { and } s=\sin \frac{1}{2} \theta \text { M1 A1 using half-angle results }
$$

$$
=2 \frac{\pi}{2 n} \cot \frac{\pi}{4 n}=2 B_{2 n} \quad \text { A1 B1 }
$$

$A_{n} B_{2 n}=\frac{\pi}{n \sin \left(\frac{\pi}{2 n}\right)} \times \frac{\pi \cos ^{2}\left(\frac{\pi}{4 n}\right)}{n \sin \left(\frac{\pi}{2 n}\right)}$ using the work above

$$
=\left[\frac{\pi \cos \left(\frac{\pi}{4 n}\right)}{n \sin \left(\frac{\pi}{2 n}\right)}\right]^{2}
$$

$A_{2 n}=\frac{\pi}{2 n \sin \left(\frac{\pi}{4 n}\right)}=\frac{\pi \cos \left(\frac{\pi}{4 n}\right)}{n \cdot 2 \sin \left(\frac{\pi}{4 n}\right) \cos \left(\frac{\pi}{4 n}\right)}=\frac{\pi \cos \left(\frac{\pi}{4 n}\right)}{n \sin \left(\frac{\pi}{2 n}\right)}$
B1 sensible expression for LHS

Since all terms are positive, we can take positive square roots to get the required result,

$$
\sqrt{A_{n} B_{2 n}}=A_{2 n}
$$

A1 (AG) fully established

Alt. Done via trig. identity work: $A_{n} B_{2 n}=\frac{\pi}{n} \cdot \frac{1}{2 s c} \cdot \frac{\pi}{2 n} \cdot \frac{c}{s}=\frac{\pi^{2}}{4 n^{2} s^{2}}=\left(\frac{\pi}{2 n} \cdot \frac{1}{s}\right)^{2}=\left(A_{2 n}\right)^{2}$ etc.

Q7 (i) If $x=\frac{p z+q}{z+1}$ and $x^{3}-3 p q x+p q(p+q)=0$ then
$\left(\frac{p z+q}{z+1}\right)^{3}-3 p q\left(\frac{p z+q}{z+1}\right)+p q(p+q)=0$ so
M1 substitution
$(p z+q)^{3}-3 p q(p z+q)(z+1)^{2}$
$+p q(p+q)(z+1)^{3}=0$
i.e. $\left(p^{3}-3 p^{2} q+p^{2} q+p q^{2}\right) z^{3}$
$+\left(3 p^{2} q-3 p q^{2}-6 p^{2} q+3 p^{2} q+3 p q^{2}\right) z^{2}$
$+\left(3 p q^{2}-3 p^{2} q-6 p q^{2}+3 p^{2} q+3 p q^{2}\right) z$
$+\left(q^{3}-3 p q^{2}+p^{2} q+p q^{2}\right)=0$
i.e. $(p-q)^{2}\left(p z^{3}+q\right)=0$ and $p \neq q$ so $p z^{3}+q=0$

M1 multiplying by $(z+1)^{3}$
M1 for expanding \& collecting like terms
A1 (AG) for checking middle terms vanish

A1 for correct first/last terms (do not need to divide by $(\boldsymbol{p}-\boldsymbol{q})^{2}$ to get this mark, but it will help later!)

Alt.: write $Z=\frac{x-q}{p-x}$ (M1) and substitute in $a z^{3}+b=0$ (M1). Expand and collect terms (M1) and check $\frac{b}{a}=\frac{q}{p}$ for no quadratic term (A1). Initial cubic legitimately obtained (A1).
(ii) We need $p q=c$ and $p q(p+q)=d$ so $p+q=\frac{d}{c} \quad$ M1 conditions on $\boldsymbol{p}, \boldsymbol{q}$

These are roots of a quadratic $y^{2}-\frac{d}{c} y+c=0 \quad$ M1 A1
This has distinct real roots iff $\left(\frac{d}{c}\right)^{2}-4 c>0 \quad$ M1 for evaluating discriminant
Since $c^{2}>0$, iff $d^{2}>4 c^{3}$.
A1 (AG)
Candidates who evaluate $d^{2}-4 c^{3}$ in terms of p and q and show the inequality holds just get first M1 (this is the converse). By writing $p=c / q$ or vice versa it is possible to get a quadratic for one of them, but unless they justify that p, q distinct when the discriminant is positive, don't give the final A1. Another alternative is to calculate $(p-q)^{2}=\frac{d^{2}}{c^{2}}+4 c$ and use this to deduce values for p and q (this is equivalent to the normal solution).
(iii) We need $p+q=1$ and $p q=-2$ so $p=2, q=-1$ M1 A1 (using quadratic or by inspection)

So this reduces to $2 z^{3}-1=0$ and $z=2^{-1 / 3}$ M1 A1 ft for value of z
and $x=\frac{2 z-1}{z+1}=\frac{2^{2 / 3}-1}{2^{-1 / 3}+1}$
M1 A1 ft calculating \boldsymbol{x}
OR \ldots so $p=-1, q=2$
So this reduces to $2-z^{3}=0$ and $z=2^{1 / 3}$
(only one of these needed)
and $x=\frac{2-z}{z+1}=\frac{2-2^{1 / 3}}{2^{1 / 3}+1}$ (equivalent to above)
(iv) $x=p$ is a root;
factoring gives $(x-p)\left(x^{2}+p-2 p^{2}\right)=0$
and $(x-p)(x-p)(x+2 p)=0$ so $x=p,-2 p$
Thus the equation reduces to the above with $p=\frac{d}{2 c}$ so has roots $x=\frac{d}{2 c}, \frac{-d}{c}$.

M1 spotting (any) root
A1
A1

A1 ft

Equivalent values of p, such as $\sqrt[3]{d / 2}$ are fine here, but NOT $p=\sqrt{c}$ as this isn't necessarily the correct sign.
(i) $\quad \frac{\mathrm{d}}{\mathrm{d} x}\left(s(x)^{3}+c(x)^{3}\right)=3 s(x)^{2} s^{\prime}(x)+3 c(x)^{2} c^{\prime}(x)$ using the Chain Rule of differentiation M1

$$
=3 s(x)^{2} \cdot c(x)^{2}+3 c(x)^{2} \cdot-s(x)^{2}=0 \Rightarrow s(x)^{3}+c(x)^{3}=\text { constant A1 }
$$

Since $s(0)^{3}+c(0)^{3}=0^{3}+1^{3}=1, s(x)^{3}+c(x)^{3}=1$ for all x
A1
(ii) $\quad \frac{\mathrm{d}}{\mathrm{d} x}(s(x) c(x))=s(x) c^{\prime}(x)+s^{\prime}(x) c(x) \quad$ using the Product Rule of differentiation

$$
\begin{aligned}
& =s(x)^{2} \cdot-s(x)^{2}+c(x)^{2} \cdot c(x) \quad \text { with derivatives substd. M1 } \\
& =c(x)^{3}-s(x)^{3}=c(x)^{3}-\left[1-c(x)^{3}\right] \text { using (i)'s result A1 } \\
& =2 c(x)^{3}-1 \quad \text { must show that given answer is obtained from (i) }
\end{aligned}
$$

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{s(x)}{c(x)}\right)=\frac{c(x) s^{\prime}(x)-s(x) c^{\prime}(x)}{c(x)^{2}} \quad \text { using the Quotient Rule of differentiation }
$$

$$
=\frac{c(x) c(x)^{2}-s(x) \cdot-s(x)^{2}}{c(x)^{2}} \quad \text { with derivatives substd. } \quad \text { M1 }
$$

$$
=\frac{c(x)^{3}+s(x)^{3}}{c(x)^{2}}=\frac{1}{c(x)^{2}} \text { using (i)'s result m.s.t.g.a.i.o.f.(i) } \quad \mathbf{A} 1
$$

(iii)
$\int s(x)^{2} \mathrm{~d} x=-c(x)+K \quad$ ignore missing K 's throughout \quad B1

B1

$$
\begin{aligned}
\int s(x)^{5} \mathrm{~d} x & =\int s(x)^{3} s(x)^{2} \mathrm{~d} x & \text { correct splitting and ... } & \\
& =\int\left[1-c(x)^{3}\right] s(x)^{2} \mathrm{~d} x \text { using (i)'s result } & \text {... use of (i) or } \int \text { n. by parts* } & \text { M1 } \\
& =\int s(x)^{2} \mathrm{~d} x-\int c(x)^{3} .-c^{\prime}(x) \mathrm{d} x & & \text { or use of parts twice }
\end{aligned}
$$

$$
=-c(x)+\frac{1}{4} c(x)^{4}+K \quad \text { using "reverse Chain Rule" integration }
$$

NB* $I=\int s^{5} \mathrm{~d} x=\int s^{3} s^{2} \mathrm{~d} x=s^{3} .-c+\int 3 s^{2} c^{3} \mathrm{~d} x=-c s^{3}+3 \int s^{2}\left(1-s^{3}\right) \mathrm{d} x$ $=-c s^{3}+3 \int s^{2} \mathrm{~d} x-3 I \Rightarrow 4 I=-c s^{3}-3 c \Rightarrow I=-\frac{3}{4} c(x)-\frac{1}{4} c(x) s(x)^{3}+K$
(iv) $\quad u=s(x) \Rightarrow \mathrm{d} u=s^{\prime}(x) \mathrm{d} x=c(x)^{2} \mathrm{~d} x \quad \& \quad 1-u^{3}=1-s(x)^{3}=c(x)^{3}$ full substn. prepn. B1

$$
\int \frac{1}{\left(1-u^{3}\right)^{\frac{2}{3}}} \mathrm{~d} u=\int \frac{1}{c(x)^{2}} \cdot c(x)^{2} \mathrm{~d} x=\int 1 \mathrm{~d} x=x+K=s^{-1}(u)+K
$$

M1 A1

3

3

$$
\begin{array}{rlr}
\int\left(1-u^{3}\right)^{\frac{1}{3}} \mathrm{~d} u & =\int c(x) \cdot c(x)^{2} \mathrm{~d} x=\int c(x)^{3} \mathrm{~d} x & \text { full substn. } \\
& =\int\left(\frac{1}{2}+\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} x}[s(x) c(x)]\right) \mathrm{d} x \quad \text { using (ii)'s result } \\
& =\frac{1}{2} x+\frac{1}{2} s(x) c(x)+K=\frac{1}{2} s^{-1}(u)+\frac{1}{2} u\left(1-u^{3}\right)^{\frac{1}{3}}+K
\end{array}
$$

Acceleration down the slope is $g \sin \alpha$
$v^{2}=2 g x \sin \alpha$
$t_{1}=\frac{x}{\frac{1}{2} \sqrt{2 g x \sin \alpha}}$ or $\sqrt{\frac{2 x}{g \sin \alpha}}$
Acceleration up the slope is $-g \sin \beta$
$d=v t_{2}-\frac{1}{2} g \sin \beta t_{2}{ }^{2}$
$t_{2}=\frac{v \pm \sqrt{v^{2}-2 d g \sin \beta}}{g \sin \beta}$
Justifying taking the negative sign

$$
\left(\frac{g \sin \alpha}{2}\right)^{\frac{1}{2}} T=(1+k) \sqrt{x}-\sqrt{k^{2} x-k d}
$$

(i) $2 \mathrm{D}-n R=(2 M+n m) a \Rightarrow a=\frac{2 D-n R}{2 M+n m}$
$D-T=M a$
$T=\frac{D(2 M+n m)-M(2 D-n R)}{2 M+n m}$
$=\frac{n(m D+M R)}{2 M+n m} \quad$ A1 Getting Given Answer legitimately

M1 A1 Use of N2L for the train; \boldsymbol{a} correct

B1 N2L for the front engine

M1 Combining results

(ii) For the $r^{\text {th }}$ carriage, with $1 \leq r \leq k$
$T_{r-1}-T_{r}-R=m a$
$T_{r-1}-T_{r}=R+m a>0 \Rightarrow$ tensions decreasing
Noting the same applies after the $2^{\text {nd }}$ engine
If U is the tension of the connection to $2^{\text {nd }}$ engine \ldots
$U-(n-k) R=(n-k) m a$

Then $T-U=\frac{n(m D+M R)}{2 M+n m}-(n-k)(R+m a)$
From first line, $2 D-n R=(2 M+n m) a$
$\Rightarrow 2 m D-m n R=(2 M+n m) m a$
$\Rightarrow 2 m D+2 M R=(m a+R)(2 M+n m)$
Substituting in:

$$
\begin{aligned}
T-U & =\frac{1}{2} n(R+m a)-(n-k)(R+m a) \\
& =\left(k-\frac{1}{2} n\right)(R+m a)
\end{aligned}
$$

So $T>U$ if $k>\frac{1}{2} n$

M1 Considering a general carriage between the two engines
A1
E1
E1
M1 Considering the tension just after $2^{\text {nd }}$ engine (can be done in several ways)
A1

M2 Finding an expression for $\boldsymbol{T}-\boldsymbol{U}$
M1 Reasonable strategy for dealing with the algebra; such as eliminating \boldsymbol{D}. Don't reward those going round in circles or reverse logic.
(iii) For the $2^{\text {nd }}$ engine, $T_{k}+D-U=M a$
$\Rightarrow T_{k}=U+M a-D=U-T$
From above, $T>U$ if $k>\frac{1}{2} n$ so $T_{k}<0$

M1 A1 N2L for the $2^{\text {nd }}$ engine
M1 Eliminating D using N2L on $1^{\text {st }}$ engine ($T=D-M a$)
E1 Correct justification using (ii)'s result

E1 Given Answer suitably justified

Q11 (i) $\angle B A O=\alpha$ (due to $|\mid$ lines)

E1 Accept this just labelled on a diagram

$\angle A B O=\alpha$ (due to Isos. Δ) so $\angle B O A=180^{\circ}-2 \alpha$ E1 Or accept Ext. \angle of Δ
So when P is at $O, \theta=2 \alpha$
and when P is at $A, \theta=\alpha$ and the result follows \quad E1 (since qn. says \boldsymbol{P} is between \boldsymbol{O} and \boldsymbol{A})
(ii) Labelled diagram:

B1
$R+T \sin \theta=m g \cos \alpha$
M1 A1 Resolving perpr. to plane for P
$T=\lambda m g$
$R>0$ if P is in contact with the plane,

$$
\text { so } \cos \alpha \geq \lambda \sin \theta
$$

B1 Resolving vertically for freely-hanging mass
E1
If this is true for all values then it holds at the largest possible $\theta \ldots$ so $\cos \alpha \geq \lambda \sin 2 \alpha$ i.e. $\cos \alpha \geq \lambda$. $2 \sin \alpha \cos \alpha \Rightarrow 1 \geq 2 \lambda \sin \alpha$

E1 Condone no mention that $\alpha<45^{\circ}$
M1 Use of trig. identity and "cancelling" to get Given Answer Condone oversight of checking for division by zero

[^0]NB follow through marks below are for candidates who have a probability of $p_{1}+p_{2}+p_{3}$ above, and work with this as the probability of an individual head, but check that they actually have $\left(1-p_{1}-p_{2}-p_{3}\right)$ for the probability of a tail, not ($3-p_{1}-p_{2}-p_{3}$); the latter is a wrong method and gets nothing.
(ii)

value	prob
2	p^{2}
1	$2 p(1-p)$
0	$(1-p)^{2}$

gives $\mathrm{E}\left(N_{1}\right)=2 p^{2}+2 p(1-p)+0=2 p$
A1 cao
$\operatorname{Var}\left(N_{1}\right)=\mathrm{E}\left(N_{1}^{2}\right)-\mathrm{E}\left(N_{1}\right)^{2}$
M1 for this or other plausible method
and $\mathrm{E}\left(N_{1}^{2}\right)=4 p^{2}+2 p(1-p)+0=2 p^{2}+2 p$
so $\operatorname{Var}\left(N_{1}\right)=2 p(1-p)$
M1 A1 ft (need $P(2)$ and either $P(1)$ or $P(0)$, but if they give all three, require all correct)

Alt. approach is to argue that these are twice the corresponding values for one toss (M1 A1) where $E(X)=E\left(X^{2}\right)=p(\mathbf{M 1} \mathbf{A 1})$, then getting the two values $(\mathbf{A 1} \mathbf{A 1} \mathbf{A G})$,
Or just to say this is $\operatorname{Bin}(2, p)(\mathbf{M 2})$ and quote the mean (A2) and variance (A2) for that
(which is in formula book: to get marks for this candidates MUST explicitly write $\operatorname{Bin}(2, p)$).
(iii)

value	prob
2	$\left(p_{1} p_{2}+p_{2} p_{3}+p_{3} p_{1}\right) / 3$
1	$\left[p_{1}\left(1-p_{2}\right)+p_{2}\left(1-p_{1}\right)+\right.$
	$p_{2}\left(1-p_{3}\right)+p_{3}\left(1-p_{2}\right)+$
	$\left.p_{3}\left(1-p_{1}\right)+p_{1}\left(1-p_{3}\right)\right] / 3$
0	$\left[\left(1-p_{1}\right)\left(1-p_{2}\right)+\right.$
	$\left(1-p_{2}\right)\left(1-p_{3}\right)+$
	$\left.\left(1-p_{3}\right)\left(1-p_{1}\right)\right] / 3$

> M1 for working out probabilities by conditioning on the chosen coins
> A1 for at least one prob correct
> A1 for all correct (of at least two given)
gives $\mathrm{E}\left(N_{2}\right)=\cdots=2 p$
A1 ft correct expression + A1 cao simplified
$\operatorname{Var}\left(N_{2}\right)=\mathrm{E}\left(N_{2}^{2}\right)-\mathrm{E}\left(N_{2}\right)^{2}$
M1 for this or other plausible method
and $\mathrm{E}\left(N_{2}^{2}\right)=2 p+2\left(p_{1} p_{2}+p_{2} p_{3}+p_{3} p_{1}\right) / 3$
A1 ft for this or other intermediate calculation for Var
so $\operatorname{Var}\left(N_{2}\right)=2 p+\frac{2\left(p_{1} p_{2}+p_{2} p_{3}+p_{3} p_{1}\right)}{3}-4 p^{2}$
A1 cao any equivalent expression
Alt. is to calculate probs for each pair of coins ($\mathbf{M 1} \mathbf{A 1} \mathbf{A 1}$) then $E(N)$ and $E\left(N^{2}\right)$ for each pair of coins ($\left.\mathbf{A 1} \mathbf{A 1}\right)$, then average at this point to give $E\left(N_{2}\right)$ and $E\left(N_{2}^{2}\right)(\mathbf{M 1} \mathbf{A 1})$, then calculate variance (A1). For a correct evaluation of the expectation by conditioning on which coins are chosen, but no probabilities/variance, give M1 A1 A1.
(iv) Look at $\operatorname{Var}\left(N_{1}\right)-\operatorname{Var}\left(N_{2}\right)=$
$2\left(p_{1}^{2}+p_{2}^{2}+p_{3}^{2}-p_{1} p_{2}-p_{2} p_{3}-p_{3} p_{1}\right) / 9$
B1 ft for suitable simplified expression
$=\left(\left(p_{1}-p_{2}\right)^{2}+\left(p_{2}-p_{3}\right)^{2}+\left(p_{3}-p_{1}\right)^{2}\right) / 9$
M1 for attempt to complete square A1 for partial completion
≥ 0, with equality iff
A1 for full completion to get the inequality
$p_{1}-p_{2}=p_{2}-p_{3}=p_{3}-p_{1}=0$, i.e $p_{1}=p_{2}=p_{3} \quad$ E1 for justifying when equality occurs
Anyone who uses the rearrangement inequality here is likely to get full marks - but check final E1!
An example of "partial completion" is writing as $p_{1}\left(p_{1}-p_{2}\right)+p_{2}\left(p_{2}-p_{3}\right)+p_{3}\left(p_{3}-p_{1}\right)$ from which the result would follow by w.l.o.g.-ing $p_{1} \geq p_{2} \geq p_{3}$.

Q13 (i) If $k \leq 2$ she can get at most 4 marks, so P (pass) $=0$
If $k=3$ the only way to pass is 3 right answers, with probability $\frac{1}{n^{3}}$.
If $k=4,3$ or 4 correct will pass, and this has prob.
$\frac{4(n-1)}{n^{4}}+\frac{1}{n^{4}}=\frac{4 n-3}{n^{4}}$.
If $k=5,4$ or 5 correct will pass, and this has prob.
$\frac{5(n-1)}{n^{5}}+\frac{1}{n^{5}}=\frac{5 n-4}{n^{5}}$.

B1 for ruling out $\boldsymbol{k}<3$
B1 for needs all correct if $k=3$
(give this even if prob. wrong/missing)
M1 for 3/4 needed \& attempt to get prob. (but see remark) A1* correct prob.
M1 for $4 / 5$ needed $\&$ attempt to get prob. (but see remark)
A1* correct prob.

M1 comparing via difference/quotient A1 inequality justified
M1 A1 for correct difference, A1 for justifying inequality
$\frac{4 n-3}{n^{4}}-\frac{1}{n^{3}}=\frac{3(n-1)}{n^{4}}>0$ since $n>1$.
$\frac{4 n-3}{n^{4}}-\frac{5 n-4}{n^{5}}=\frac{4 n^{2}-8 n-4}{n^{5}}=\frac{4(n-1)^{2}}{n^{5}}>0$
So $k=4$ is best.

NB It is possible to do part (i) without calculating any probabilities: if you would pass with three questions, answering another question cannot hurt you, and if you would fail after four questions, answering another question cannot help you. A candidate who explains this will get most of the marks above, but do not give the two marks A1* unless these probabilities appear later on - you do need to calculate these probabilities at some point.
(ii) $\mathrm{P}(k=4 \mid$ pass $)=\frac{\mathrm{P}(k=4 \cap \text { pass })}{\mathrm{P}(\text { pass })}$
$=\frac{\frac{1}{6} \times \frac{4 n-3}{n^{4}}}{\frac{1}{6} \times \frac{4 n-3}{n^{4}}+\frac{1}{6} \times \frac{1}{n^{3}}+\frac{1}{6} \times \frac{5 n-4}{n^{5}}}$
$=\frac{4 n^{2}-3 n}{5 n^{2}+2 n-4}$

M1 for this in any form

M1 A1ft for substituting probs from before or re-calculating

A1cao (simplified to a quotient of polys, not nec. lowest terms)
If a candidate jumps straight to the second line, assume they know where it comes from. However, if they jump straight to the second line without the $\frac{1}{6} s$ (and without justifying that they cancel), withhold the final A1.

$$
\text { (iii) } \begin{array}{rlrl}
\mathrm{P}(\text { pass })= & \mathrm{P}(3 \text { heads }) \mathrm{P}(\text { pass } \mid 3 \text { heads }) & \text { M1 for conditioning on the number of heads } \\
& +\mathrm{P}(4 \text { heads }) \mathrm{P}(\text { pass } \mid 4 \text { heads }) & \\
& +\mathrm{P}(5 \text { heads } \mathrm{P}(\text { pass } \mid 5 \text { heads }) & \\
= & 10 \frac{n^{3}}{(n+1)^{5}} \times \frac{1}{n^{3}}+5 \frac{n^{4}}{(n+1)^{5}} \times \frac{4 n-3}{n^{4}}+\frac{n^{5}}{(n+1)^{5}} \times \frac{5 n-4}{n^{5}} & & \text { M1 A1 for calculating binomial probabilities } \\
& & \text { M1 A1cao for substituting probs from before or } \\
\text { re-calculating }
\end{array}
$$

5

If a candidate works throughout with a particular value of n (typically 2) they can get at most the following marks: B1 B1 M1 A0 M1 A0 (4/6) M1 A0 M0 A0 A0 (1/5) M1 M0 A0 A0 (1/4) M1 M1 A1 M1 A0 (4/5), total 10.

[^0]: (iii) $m g \sin \alpha+T \cos \theta=F$

 M1 A1 Resolving parallel to plane; correct
 $F=m g \tan \beta(\cos \alpha-\lambda \sin \theta)$
 B1 Correct use of $F \leq \mu R$ (condone $=$)
 $\sin \alpha+\lambda \cos \theta=\frac{\sin \beta}{\cos \beta}(\cos \alpha-\lambda \sin \theta)$
 $\Rightarrow \sin \alpha \cos \beta+\lambda \cos \theta \cos \beta=\sin \beta \cos \alpha-\lambda \sin \beta \sin \theta$
 $\Rightarrow \lambda(\cos \theta \cos \beta+\sin \beta \sin \theta)=\sin \beta \cos \alpha-\sin \alpha \cos \beta$
 $\Rightarrow \lambda=\frac{\sin \beta \cos \alpha-\sin \alpha \cos \beta}{\cos \theta \cos \beta+\sin \beta \sin \theta}$
 $=\frac{\sin (\beta-\alpha)}{\cos (\beta-\theta)}$
 M1 Isolating λ

 M1 A1 Use of compound angle formula; answer correct
 Since $\theta<2 \alpha$ and $\beta \geq 2 \alpha$ then $\beta-\theta>0$
 The minimum of $\sec (\beta-\theta)$ is achieved when θ is a maximum; i.e. $\theta=2 \alpha$. For the system to be in equilibrium for all P between O and A then λ must be less than this

 E1 Explaining how given condition is used

 If $\alpha \leq \beta \leq 2 \alpha$ then the minimum of $\sec (\beta-\theta)$
 is achieved when $\theta=\beta$
 at which point the condition becomes $\lambda \leq \sin (\beta-\alpha)$ B1

